
Counting Holomorphic Discs in K3 Surfaces

Yu-Shen Lin

September 17, 2017

Abstract

In the survey, we review the recent development of the reduced
open Gromov-Witten invariants of K3 surfaces defined by the author.
We study the wall-crossing formula, multiple cover formula for the
invariants and its relation to tropical geometry.

1 Introduction

In 1987, Yau proved the Calabi conjecture and particularly showed the exis-
tence of Ricci-flat metric in any given Kähler class of a Calabi-Yau manifold
[32]. The explicit expression of the Ricci-flat metric is need to write down
the Lagrangian of superstring theory. However, not much is known about
the behavior nor the explicit expression of the Ricci-flat metrics.

It is a classical enumerative problem to count the number of lines in a
quintic threefold. The answer 2875 can be computed via intersection theory
and Schubert calculus. One can ask the similar questions with lines replaced
by rational curves of general degree and these numbers are later known as
the genus zero Gromov-Witten invariants. The problem becomes extremely
complicated as the degree increases and not solved until 1990. Candelas-de la
Ossa-Green-Parkes [6] computed the genus zero Gromov-Witten invariants
via mirror symmetry: surprisingly these enumerative problems can be solved
by the study of variation of Hodge structures of another family of Calabi-Yau
3-folds, called the mirror of quintic 3-folds. As more and more examples of
mirror symmetry are found, the enumerative problems become how to find
mirrors effectively.

The Strominger-Yau-Zaslow conjecture (SYZ conjecture for short)[28]
tries to answer both problems and connect the Ricci-flat metrics and the
enumerative problems on Calabi-Yau manifolds together. The conjecture
contains three parts: First of all, SYZ conjecture predicts the existence of
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special Lagrangian torus fibration on Calabi-Yau manifolds near the large
complex limit point. Secondly, the mirror Calabi-Yau manifolds are given
by the dual torus fibration. Moreover, it predicts that the Ricci-flat metric
is semi-flat metric, which is Ricci-flat and fibrewisely flat on the special La-
grangian tori, with small instanton corrections from (pseudo)-holomorphic
discs with boundary on special Lagrangian torus fibre when the Calabi-Yau
is near large complex limit.

K3 surfaces are two dimensional Calabi-Yau manifolds and always admit
hyperKähler structures due to the dimension reason. To understand the hy-
perKähler metric when the hyperKähler manifolds go to the complex limit,
Gaiotto-Moore-Neitzke proposed a twistor construction of hyperKähler met-
ric (on Hitchin moduli spaces) [4]. The main non-trivial input of the algo-
rithm is an integer-valued invariant called generalized Donaldson-Thomas
invariant, satisfying the reality condition and Kontsevich-Soibelman wall-
crossing formula. This twistor construction is possible to generalized to
abelian fibred hyperKähler manifolds, and it is interesting to understand
the mathematical meaning of the generalized Donaldson-Thomas invariants
and the relation to hyperKähler metric.

In this survey we will develop an open analogue Gromov-Witten invari-
ants, which count holomorphic discs with boundaries on special Lagrangians
in K3 surfaces. There are two difficulties at first glance: on one hand, the
relevant moduli spaces have real codimension one boundary in general and
the virtual fundamental class will not be well-defined. On the other hand,
the virtual dimension of the relevant moduli spaces is negative and thus
there is no (pseudo-)holomorhpic discs with respect to a generic almost
complex structures on K3 surfaces. The key is to use hyperKähler geom-
etry to introduce an auxiliary S1-family of complex structures and count
the holomorphic discs in the total space instead. This idea is similar to the
changing tangent-obstruction theory of defining reduced Gromov-Witten in-
variants in algebraic geometry [26][4]. The ambiguity caused by the real
codimension one boundaries of the moduli spaces can be interpreted as the
wall-crossing phenomenon of the reduced open Gromov-Witten invariants as
certain parameters change. Depending on whether the boundary of the holo-
morphic discs are homologous to zero or not, there are two corresponding
wall-crossing formulas. The two different wall-crossing formula have their
own applications in tropical geometry and the multiple cover formula for
holomorphic discs respectively.

Tropical geometry also arises naturally in the picture of Strominger-Yau-
Zaslow conjecture [28][18]. One part of Strominger-Yau-Zaslow conjecture
says that the special Lagrangian fibration of a Calabi-Yau manifold will
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collapse to an integral affine manifold with singularities near the large com-
plex limit. It is expected that the holomorphic curves in the Calabi-Yau
manifold will converge to some 1-skeletons, known as tropical curves, of the
affine manifold with singularities in the sense of Gromov-Hausdorff. The
holomorphic conditions will translate into the so-called ”balancing condi-
tion” of tropical curves. One advantage of the tropical geometry is that the
complicated enumerative geometry problems on Calabi-Yau manifolds can
broke down to combinatorics once certain corresponding theorems are estab-
lished. The reduced open Gromov-Witten invariants have a tropical counter
part as well. Moreover, using the invariants and its wall-crossing formula,
we establish a correspondence between holomorphic discs and tropical discs.

Gromov-Witten invariants are usually interpreted as the counting of
holomorphic curves with certain incidence conditions. However, this is only
true if the curve classes are primitive. When the multiple covers of holo-
morphic curves appears, the Gromov-Witten type invariants have values in
rational numbers due to the existence of automorphisms. It is interesting
to ask the enumerative meaning of Gromov-Witten invariants in general.
The Gopakumar-Vafa conjecture asserts that after suitable rearranging the
generating functions of Gromov-Witten invariants and one can recover an-
other sets of invariants which are integer-valued! The new integer-value
invariants are equivalent to the Gromov-Witten invariants and the multiple
cover formula coverts one to the other. The wall-crossing formula for the
holomorphic discs with boundaries homologous to zero will lead to an open
analogue of the multiple cover formula for holomorphic discs.

The survey is arranged as follows: In Section 2, we review some standard
facts about hyperKähler manifolds and discuss the properties of holomor-
phic discs in a particular S1-family of K3 surfaces induced from hyperKähler
geometry. We will define the reduced open Gromov-Witten invariants in
Section 3 and give some examples in Section 4. We will talk about the
wall-crossing phenomenon of the reduced open Gromov-Witten invariants
in Section 5. In section 6, we will see some applications of the wall-crossing
formula, including a tropical/holomorphic discs correspondence and the mul-
tiple cover formula for reduced open Gromov-Witten invariants.
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2 Holomorphic Discs in K3 Surfaces

2.1 HyperKähler Rotation

Definition 2.1. A K3 surface is a compact complex surface with trivial first
fundamental group and trivial first Chern class.

It is showed that every K3 surface is Kähler [27]. Together with the
vanishing of first Chern class, the holonomy of a K3 surface falls in SU(2) =
Sp(1). Thus, every K3 surface is hyperKähler. More precisely, let X be a K3
surface and Ω be a nowhere vanishing holomorphic (2, 0)-form guaranteed
by the vanishing of first Chern class. Given any Kähler class [ω], there exists
a Ricci-flat metric ω in the Kähler class [ω] such that

ω2 = cΩ ∧ Ω̄,

where c ∈ R>0 from the Calabi conjecture [32]. We will scale Ω (but still
denote it Ω) with an overall constant such that c = 1

2 . We will call the pair
(ω,Ω) a hyperKähler triple. It is a standard fact that there exists integrable
complex structures J1, J2, J3 satisfying quaternion relation, such that

ω(·, ·) = g(J3·, ·)

is a Kähler form and

Ω(·, ·) = g(J1·, ·) + ig(J2·, ·)

is a holomorphic 2-form with respect to the complex structure J3. More-
over, the underlying space X of X admits a family of complex structures
parametrized by P1, called twistor line. Explicitly, they are given by

Jζ =
i(−ζ + ζ̄)J1 − (ζ + ζ̄)J2 + (1− |ζ|2)J3

1 + |ζ|2
, ζ ∈ P1.

The holomorphic symplectic 2-forms Ωζ with respect to the compatible com-
plex structure Jζ are given by

Ωζ = − i

2ζ
Ω + ω − i

2
ζΩ̄. (1)

In particular, straightforward computation from (1) gives

Proposition 2.2. Assume ζ = eiϑ, then we have

ωϑ := ωζ = −Im(e−iϑΩ), (2)

Ωϑ := Ωζ = ω − iRe(e−iϑΩ). (3)
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Remark 2.3. Let L be a holomorphic Lagrangian in (X,ω,Ω), namely, a
complex submanifold of X with dimCL = 1

2dimCX and Ω|L = 0. Assume
that the north and south pole of the twistor line are given by (ω,Ω) and
(−ω, Ω̄) respectively, making L a holomorphic Lagrangian. The hyperKähler
structures corresponding to the equator {ζ = eiϑ : |ζ| = 1} make L a special
Lagrangian in Xϑ = (X,ωϑ,Ωϑ), i.e. ωϑ|L = ImΩϑ|L = 0 by Proposition
2.2. In particular, if (X,ω,Ω) admits a holomorphic Lagrangian fibration,
then it induces a special Lagrangian fibrations on Xϑ for each ϑ ∈ S1. This
is the so-called hyperKähler rotation trick.

2.2 Holomorphic Discs in Twistor Family

Let (X,ω,Ω) be a K3 surface X with a choice of holomorphic volume form
Ω and a Ricci-flat metric ω satisfying 2ω2 = Ω ∧ Ω̄. Let L be a holomor-
phic Lagrangian submanifold in X. From Remark 2.3, the hyperKähler
triple (ω,Ω) induces an S1-family of hyperKähler manifolds X[ω] = {Xϑ}1
containing L as a special Lagrangian submanifold. For any relative class
γ ∈ H2(X,L)2, we define Mγ(Xϑ, L) to be the moduli space of stable discs
holomorphic with respect to the complex structure of Xϑ, with boundary on
L and relative class γ. The standard index calculation shows that the vir-
tual dimension of the moduli space is minus one. This suggests that respect
to a generic almost complex structure, there is no pseudo-holomorphic discs
in a K3 surface with special Lagrangian boundary condition. Since we start
with the data (X,ω,Ω, L), there is no favorable ϑ ∈ S1 than others. It is
more natural to consider the following family version of moduli space

Mγ(X[ω], L) :=
⋃
ϑ∈S1

Mγ(Xϑ, L),

which is the moduli space of the stable discs holomorphic with respect to the
complex structures of Xϑ for some ϑ ∈ S1. A priori, the new moduli space
Mγ(X[ω], L) may be complicated. Assume thatMγ(X[ω], L) 6= ∅, then there
exist a holomorphic disc in Xϑ of relative class γ for some ϑ. In particular,
we have

0 =

∫
γ

ImΩϑ = −
∫
γ

Re(e−iϑΩ)

0 <

∫
γ
ωϑ = −

∫
γ

Im(e−iϑΩ).

1Notice that the family {Xϑ} does depend on the choice of [ω]. However, we will just
omit the subindex [ω] for simplicity.

2All the homology or cohomology in the paper are Z-coefficient unless mentioned
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Figure 1: (a)boundary of type I (b)boundary of type II

In other words, the only Xϑ admits holomorphic discs in the relative class γ
is given by ϑ = Arg

∫
γ Ω+ π

2 if the moduli spaceMγ(X[ω], L) 6= ∅. Although

Mγ(X[ω], L) 6= ∅ topologically is the same asMγ(Xϑ, L) for some ϑ ∈ S1, its
virtual dimension is zero and equipped naturally with a different Kuranishi
structure [20]. This observation also motivates the definition of the central
charge in the next section.

In general, the moduli spaceM[ω]
γ (X, L) will have two kinds of real codi-

mension one boundary (see also Figure 2.2):

1. A holomorphic disc of relative class γ can degenerate into two discs
(holomorhpic to the same complex structure) of relative classes γ1, γ2
such that γ = γ1 + γ2. We will call this the real codimension one
boundary of type I.

2. If ∂γ is homologous to zero then a holomorphic disc of relative class
γ without marked points can degenerate to a rational curve with one
marked point on L. We will call this the real codimension one bound-
ary of type II.

The real codimension one boundary strata will play the important role in
the wall-crossing formula of the reduced open Gromov-Witten invariants we
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defined later. The two different kinds of real codimension one boundaries
correspond to the two wall-crossing formula in Section 5.

2.3 Central Charges and the Wall of Marginal Stability

Fix a choice of holomorphic (2, 0)-form Ω of the K3 surface X. Let Def(L) be
the smooth deformation space of the holomorphic Lagrangian L in X. For
each u ∈ Def(L), we will denote the corresponding holomorphic Lagrangian
by Lu. Then there is an exact sequence of local system of lattices⋃

u∈Def(L)

H2(X,Z)→ Γ :=
⋃

u∈Def(L)

H2(X,Lu)→
⋃

u∈Def(L)

H1(Lu)→ 0

over Def(L). There exists a natural function defined on Γ called the central
charge:

Z :Γ −→ C

γu → Zγu =

∫
γu

Ω,

for γu ∈ H2(X,Lu). The holomorphic Lagrangian condition of L guarantees
that the central charge Z to be well-defined. It worth noticing that the
monodromy will change sheets of Γ, so the notation γ is always local in
the parameter space. One can identify the sections of Γ and Def(L) locally
and thus induce a natural complex structure on Γ. The following lemmas
followed from straightforward calculations.

Proposition 2.4. [20] The central charge Z : Γ → C is a holomorphic
function.

Proposition 2.5. [20] If M[ω]
γ (X, L) is non-empty, then

1. |Zγ | is the symplectic area of the corresponding holomorphic discs, and

2. ϑ = ArgZγ + π
2 denotes the unique ϑ ∈ S1 such that Mγ(Xϑ, L) is

non-empty.

Let γ1, γ2 ∈ H2(X,L) and

W ′γ1,γ2 := {u ∈ B0|ArgZγ1(u) = ArgZγ2(u)}. (4)
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Then we define the wall of marginal stability associated to a relative class γ
locally to be

W ′γ =
⋃

γ1+γ2=γ
〈γ1,γ2〉6=0

W ′γ1,γ2 . (5)

By Gromov compactness theorem, the wall of marginal stability W ′γ is a
locally finite union of real codimension one and real analytic subsets of
Def(L) .

Definition 2.6. Let γ ∈ H2(X,Lu) be a relative class, then we say γ is
strongly primitive if γ can not be written in the form

kγ′ + γ′′,

such that γ′ ∈ H2(X,Lu), γ′′ ∈ ι(H2(X)) and
∫
γ′′ Ω = 0.

Then we have the following theorem:

Theorem 2.7. [22] Let γ ∈ H2(X,Lu) is strongly primitive. Assume that

1. u /∈W ′γ, and

2. 〈[ω], γ̃〉 6= 0, for every lifting γ̃ ∈ H2(X) of γ with γ̃2 ≥ −2.

then the moduli space M[ω]
γ (X, Lu) has no boundary.

Proof. Assume that the moduli spaceMγu(X, Lu) has non-empty real codi-
mension one boundary of type I. Then there exists γ1,u, γ2,u ∈ H2(X,Lu)
such that

γu = γ1,u + γ2,u

andMγ1,u(X, Lu) evϑ×evϑMγ2,u(X, Lu) is non-empty, where evϑ is the evalu-
ation map to S1. In particular, we have Zγ1(u)Zγ2(u) 6= 0 from Proposition
2.5 and

ArgZγ(u) = ArgZγ1(u) = Argγ2(u) = ϑ+ π/2.

The interesting implication is that we may not always have bubbling phe-
nomenon of the moduli space Mγ(X, Lu) unless the torus fibre Lu sits over
the locus characterized by

ArgZγ1 = ArgZγ2 . (6)
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Assume that Zγ1 is not a multiple of Zγ2 . Since the central charges are
holomorphic functions, the equation (6) locally is harmonic and defines a
real analytic hypersurface. In particular, the mean value property of har-
monic functions implies that locally this hypersurface divides the base into
chambers. If Zγ1 = kZγ2 , then Zγ1−kγ2 = 0. In particular, dZγ1−kγ2 = 0
implies

∂γ1 − k∂γ2 = 0 ∈ H1(L,Z) ∼= Z2

Thus, there exists positive integers k1 = kk2, k2, and ∂γ′ ∈ H1(L,Z), such
that we have

∂γi = ki∂γ
′ ∈ H1(L,Z)), i = 1, 2.

and

∂γ = ∂γ1 + ∂γ2 = (k1 + k2)∂γ
′.

Thus, ∂γ is not primitive.
If the moduli spaceMγ(X, Lu) admits a real codimension one boundary

of type II, then there exists a lifting γ̃ ∈ H2(X) of γ which holomorphic discs
of relative class γ (with no marked points) degenerate to rational curves in
class γ̃ with one marked point on L. Assume the rational curve is realized
in Xϑ, then

〈[ω], γ̃〉 = 〈ReΩϑ, γ̃〉 = 0.

For preparation of the definition of the reduced open Gromov-Witten

invariant in the next section, we need to orient the moduli spaceM[ω]
γ (X, L)

coherently. We first recall the following theorem for coherent orientation of
the moduli spaces of holomorphic discs:

Theorem 2.8. [11] Let X be a symplectic manifold and L be its Lagrangian
submanifold. Given a choice of relative spin structure of L will naturally
determine an orientation of the moduli space of stable discs Mγ(X,L) for
all γ ∈ H2(X,L).

The moduli spaceM[ω]
γ (X, L) is virtually R×Mγ(Xϑ, L) for some ϑ ∈ S1

and thus admits a natural orientation if both factors do. The R factor is
the linearization of S1 ⊆ C ⊆ P1 and thus admits a natural orientation.
By Theorem 2.8, the later factor admits a natural orientation by choosing a
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relative spin structure of L. Notice that L is a special Lagrangian and thus
is oriented. Let V be the normal bundle of L and TL ⊕ V is a trivial real
rank 4 bundle over L and admits a trivia spin structure. These together
give the data for orientation of the moduli space of the later factor. Thus,
there exists a coherent orientation for the moduli space Mγ(X, L), for all
γ ∈ H2(X,L).

3 Reduced Open Gromov-Witten Invariants in K3
Surfaces

Under the same assumption of Theorem 2.7, the moduli space Mγ(X, Lu)
has no boundary. In particular, there is no real codimension one bound-
ary and we are back to the situation of defining closed Gromov-Witten

invariants. There exists a virtual fundamental class [M[ω]
γ (X, Lu)]vir ∈

H0(M[ω]
γ (X, Lu),Q) [10]. We will define the reduced open Gromov-Witten

invariants by

Ω̃(γ;u) :=

∫
[M[ω]

γ (X,Lu)]vir
1. (7)

For the general case, the invariant is defined via the de Rham model devel-
oped in [8].

Theorem 3.1. [20] Let γ ∈ H2(X,Lu) be a relative class. Assume that
u /∈W ′γ, then the invariant Ω̃(γ;u) is well-defined.

Notice that the assumption in the Theorem 3.1 is an open condition.
Using the cobordism argument, one has the follow basic property of the
reduced open Gromov-Witten invariants.

Theorem 3.2. [20] Let u0 ∈ B0 and γu0 ∈ H2(X,Lu0) such that ∂γ 6= 0.
Assume that u /∈ W ′γ, then Ω̃(γ;u) is well-defined in a neighborhood of u0
and is locally constant.

Although the S1-familyM[ω]
γ (X, L) depends on the choices of the Kähler

forms, the invariant Ω̃(γ;u) actually does not depend on such choice. In-
deed, for any two choices of Kähler class [ω0], [ω1], one can find a path of
Kähler classes [ωt] connecting them because the Kähler cone is path con-
nected. Then the natural family of moduli spacesMγ(Xt, Lu) naturally give
a cobordism between Mγ(X0, Lu) and Mγ(X1, Lu). Therefore, we have
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Theorem 3.3. Assume that ∂γ 6= 0 ∈ H1(Lu), then the invariant Ω̃(γ;u)
is independent of the choice of Kähler classes.

Any holomorphic disc in Xϑ would also be a holomorphic disc in X−ϑ af-
ter the orientation is reversed. In particular, the moduli space M−γ(X, Lu)
topologically is the same asMγ(X, Lu). By comparing the Kuranishi struc-
ture and the orientation of the above two moduli spaces, we have the ”reality
condition”3.

Theorem 3.4. [20] Assume that γ ∈ H2(X,Lu) and u /∈W ′γ, then

Ω̃(−γ;u) = Ω̃(γ;u). (8)

4 Examples

4.1 Ooguri-Vafa Spaces

In this section, we will study a local model called Ooguri-Vafa space. The
Ooguri-Vafa space XOV is an elliptic fibration over a disc in C with only one
singular fibre, a one-nodal rational curve, over the origin. Let B ∈ C be a
disc centered at the origin and Λ is a lattice in T ∗(B\{0}) with monodromy
conjugate to

(
1 1
0 1

)
around the origin. Then XOV can be realized as a partial

compactification of T ∗(B\{0})/Λ. The canonical symplectic 2-form of the
cotangent bundle descend to the quotient and can be extended to a nowhere
vanishing holomorphic (2, 0)-form ΩOV on XOV .

There exists a holomorphic S1-action on XOV . Moreover, there exists an
S1-equivariant Ricci-flat metric ωOV which can be written down explicitly
[24]. Using the hyperKähler rotation in Remark 2.3, we derive an S1-family
of K3 surfaces {Xϑ} and each K3 surface Xϑ admits a special Lagrangian
fibration. Let Lu denote the special Lagrangian torus over u ∈ B. Then
by the standard maximal principle argument, Lu can bound a holomorphic
disc in Xϑ if and only if u falls on the unique affine ray emanating from the
origin respect to the complex affine coordinate [1][5]. Moreover, there is only
a unique simple holomorphic which is the union of vanishing cycles along
the affine line segment from the origin to u, which is usually known as the
Lefschetz thimble (see Figure 4.1 below). All the other holomorphic discs
are the multiple cover of it. The open Gromov-Witten invariants associated
to the Lefschetz thimble are calculated using localization in [20].

3This is one of the two important properties of the generalized Donaldson-Thomas
invariant for constructing hyperKähler metric in [12]
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Figure 2: The Ooguri-Vafa space and its unique simple holomorphic disc.

Theorem 4.1. [20] Let γe ∈ H2(X,Lu) denote the relative class of Lefschetz
thimble, then

Ω̃(γ, u) =

{
(−1)d−1

d2
, if γ = dγe, d ∈ Z

0 , otherwise.

Geometrically the part that Ω̃(γ;u) = 1 can be understand as follows:
We know that only the torus fibre over the affine line through the origin
can bound holomorphic discs in Xϑ. As ϑ varies in S1, the affine ray also
rotates and every point in B is swept exactly once. In other words, every
torus fibre bounds a unique simple holomorphic disc (in the relative class of
Lefschetz thimble) with respect to some (different) complex structure in the

S1-family X
[ωOV ]
OV . One can write down the holomorphic disc explicitly and

it is smooth. Thus the unique holomorphic disc is Fredholm regular in the
family. The rest of the Theorem 4.1 is the multiple cover formula for this
simple holomorphic disc.

Remark 4.2. Notice that the invariant computed above indeed satisfies Con-
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jecture 6.9. Moreover, it suggests that

Ω(γ, u) =

{
1 if γ = ±γe,
0 otherwise,

which gives rise to a geometric meaning of the BPS counting for the Ooguri-
Vafa space [12].

4.2 Elliptic K3 Surface with I1-Type Singular Fibres

Since we want to study holomorphic discs in K3 surfaces, it is inevitable
to answer the existence of such discs. For elliptic K3 surface with I1-type
singular fibres, a tubular neighborhood of such a singular fibre topologically
is the same as Ooguri-Vafa space. Thus, it is natural to guess that there
is one simple holomorphic disc near each I1-type singular fibre in the K3
surface which corresponds to the unique simple holomorphic disc in the
Ooguri-Vafa space. The answer to the question is confirmative and is proved
in [20]: one first constructs an approximate simple special Lagrangian disc
(with its boundary on an elliptic fibre) using the behavior of hyperKähler
metric on K3 surfaces near the large complex limit [14]. Then use the
deformation theory of special Lagrangian with boundaries and quantitative
implicit function theorem to deform the approximate special Lagrangian
disc to a special Lagrangian disc, which give rise to a holomorphic disc after
hyperKähler rotation.

Theorem 4.3. [20] Let (X,ω,Ω) be an elliptic K3 surface with a holomor-
phic section 4, where ω is the Ricci-flat metric and Ω is a nowhere vanishing
holomorphic volume form. Let u be a point on the above affine ray starting at
the singular point p. Assume there is no other singular point of affine struc-
ture on the affine segment between u and p. Then there exists ε0 = ε0(u) > 0
such that there exists an immersed holomorphic disc in the relative class γe
and boundary on Lu in X ′ϑ. Here X ′ϑ is a K3 surface with special Lagrangian
fibration and

∫
Lu
ω′ < ε0 derived from hyperKähler rotation 5. Moreover, the

holomorphic disc geometrically is a perturbation of the vanishing cycles over
the affine ray away from the singularity.

One can construct a family of hyperKähler metric connecting the Ooguri-
Vafa metric and the true Ricci-flat metric of K3 surface near the I1-type

4If we only want to know the existence of initial discs near the singular fibre then one
can drop this assumption.

5One may view
∫
Lu

Ω′ as the distance of the K3 surface X ′ to the large complex limit
point.
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singular fibre. In particular, this helps to establish a cobordism the moduli
spaces of holomorphic discs with small area. In particular, the reduced
open Gromov-Witten invariants of this simple disc is calculated as well as
its multiple cover contribution.

Theorem 4.4. [20] Let γe be the relative class of Lefschetz thimble around
an I1-type singular fibre, then given any d0 ∈ N, there exists a non-empty
neighborhood Ud0 of the singularity such that for each u ∈ Ud0, we have

Ω̃(dγe;u) =
(−1)d−1

d2
, for every integer d, |d| ≤ d0.

Moreover, for u close enough to the singularity, ±γe are the only classes
support holomorphic discs which achieve minimum symplectic with Ω̃(γ) 6=
0.

Remark 4.5. We will call the simple holomorphic discs in the Theorem 4.3
the initial discs, which correspond to the initial rays in the Gross-Seibert
program [13].

4.3 A Vanishing Theorem

Let [L] ∈ LK3, [L]2 ≥ −2 and we set M′[L] be the moduli space of marked

K3 surfaces such that the curve class corresponding to [L] can be realized
as a smooth rational curve (see Section 5.2 for the definition). We will still
denote the corresponding smooth holomorphic curve by L in the K3 surface
X inM′[L]. Let γ ∈ H2(X,L) be a relative class and γ̃ ∈ H2(X) be a lifting.

We will denote the Poincaré dual of γ̃ by PD(γ̃) ∈ LK3. Assume moreover
that X is in M′[L] ∩MPD(γ̃). Then for any choice of Kähler class [ω], the

moduli space M[ω]
γ (X, L) is empty. Indeed, if there is a holomorphic disc in

X[ω] with relative class γ, then its symplectic area is given by

|
∫
γ

Ω| = |
∫
γ̃

Ω| = 0,

where Ω is the holomorphic volume form of X. In particular, this proves
the vanishing of the reduced open Gromov-Witten invariants.

Theorem 4.6. [21] With the notation above, then Ω̃[ω](γ) = 0.
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4.4 A 2-Elementary Surfaces

Let E be the elliptic curve given by C/〈1, i〉, which admits a real structure
τ and a holomorphic involution induced from x 7→ −x on C. Let Y be the
Kummer K3 surface associated to E × E, namely, the minimal resolution
of the (E × E)/Z2. Then Y admits a real structure induced from τ (and
we will still denote it by the same notation). Let ΩY be the holomorphic
volume form of Y and ωY be a Ricci-flat Kähler form. It is straight-forward
to check that τ∗ΩY = Ω̄Y and τ∗ωY = −ωY . The fixed loci of τ are four
spheres. Since τ is anti-symplectic and anti-holomorphic, the fixed locus are
special Lagrangian spheres. There are in total 16 exceptional rational curves
on Y . They form four groups and each group of four intersect one special
Lagrangian sphere on an S1. In other words, each special Lagrangian sphere
bounds four pairs of smooth holomorphic discs. Each pair of holomorphic
discs is fixed by the involution τ and glue together to an exceptional curve
in Y . We will denote one of the special Lagrangian spheres by L and it
bounds holomorphic discs of relative classes γi ∈ H2(Y,L), i = 1, · · · , 8.

Let X be the K3 surface derived by hyperKähler rotation from Y such
that its holomorphic volume form

ΩX = ωY + iImΩY

and a choice of Ricci-flat Kähler form ωX = ReΩ. Then X is a 2-elementary
K3 Surface with the anti-(holomorphic)symplectic involution τ and L is a
smooth rational curve in X. Let γ = γi for some i ∈ {1, 2, 3, 4} then any
holomorphic disc in the relative class γ in the family X[ω] can be doubled
to a (−2)-rational curve under the involution τ . Thus, such holomorphic
disc is unique. Moreover, the holomorphic disc is smooth implies that it is
Fredholm regular in the family X[ω]. In particular, it gives that Ω̃[ω](γ) = 1.

5 Wall-Crossing Phenomenon of the Reduced Open
Gromov-Witten Invariants

5.1 Wall-Crossing Formula I: ∂γ 6= 0

Let X → B be an elliptic K3 surface and u0, u1 ∈ B0 falls on different sides
of W ′γ1,γ2 . Here we assume that ∂γ1, ∂γ2, ∂γ1 +∂γ2 are non-zero in H1(Lu1).
Choose a path u(t) ∈ B0 such that u(0) = u0 and u(1) = u1 passing through
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W ′γ1,γ2 transversally at a generic point p once. The family of moduli space⋃
t∈[0,1]

Mγ1+γ2(X, Lu(t)) (9)

forms a cobordism betweenMγ1+γ2(X, Lu0) andMγ1+γ2(X, Lu1). However,
there exists an additional boundary of (9) due to the bubbling phenomenon
and induces the wall-crossing formula below.

Theorem 5.1. [20] Assume that

1. γ1, γ2 ∈ H2(X,Lp) are primitive classes.

2. There is only one splitting of the holomorphic discs γ1, γ2, i.e.,

M1,γ1(X, Lp)×L×S1
ϑ
M1,γ2(X, Lp) =Mγ1+γ2(X, Lp) (10)

topologically,

then the difference of the reduced open Gromov-Witten invariants on differ-
ent sides of the wall is given by

Ω̃(γ1 + γ2;u1)− Ω̃(γ1 + γ2;u0) = ±〈γ1, γ2〉Ω̃(γ1; p)Ω̃(γ2; p) (11)

Here we gives an example that the holomorphic discs that can only
smooth out in one side of the wall. In particular, this gives an example of
non-trivial wall-crossing phenomenon of holomorphic discs in K3 surfaces.

Example 5.2. [20] Assume there are two initial rays emanating from two I1-
type singularities of phase ϑ0 intersect at p ∈ B0. From Theorem 4.3, there
are two initial holomorphic discs of relative classes γ1, γ2 corresponding to
the initial rays which are Fredholm. Moreover, the two initial holomorphic
discs intersect transversally in Lp. Apply automatic transversality [31] on
K3 surfaces, these two discs cannot be smoothed out in Lp. First, we will
prove that these two discs will smooth out when the Lagrangian boundary
conditions vary across the wall. Pick two point p1, p2 near p but on the
different side of wall of marginal stability Wγ1,γ2. Let ψ : (−ε, 1 + ε) be
a path on B0 such that ψ(0) = p1, ψ(1) = p2 and intersect Wγ1,γ2 once
transversally at p. Let X be the total space of twistor space of X with two
fibres with elliptic fibration threw away. Then Lu × S1

ϑ is a totally real
torus in X . Now consider an complex manifold X × C with a totally real
submanifold

L =
⋃
t

(Lψ(t) × S1
ϑ).
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By our assumption, there are two regular simple holomorphic discs in X
with boundaries in Lp × {ϑ0} ⊆ L of relative classes again we denoted by
γ1, γ2. The tangent of evaluation maps for both discs are two dimensional
and transversal from the C1-estimate of the Monge-Amperé equation. By
Theorem 4.1.2 [3], these two discs can be smoothed out into simple regular
discs in L and the union of initial holomorhpic discs are indeed the codi-
mension one of the boundary of the usual moduli space of holomorphic discs
M0,γ1+γ2(X ,L). By maximal principle twice, each of the holomorphic disc
falls in Mγ1+γ2(X, Lψ(t0)) for some t0. In particular, we will have ψ(t0) = p
and

M1,γ1(X, Lp)×L×S1
ϑ
M1,γ2(X, Lp) ⊆Mγ1+γ2(X, {Lt}) (12)

as codimension one boundary. Each point (12) smooth out to a smooth
holomorphic disc. Therefore, from the Theorem 5.1

∆Ω̃(γ1 + γ2) = ±〈γ1, γ2〉Ω̃(γ1, p)Ω̃(γ2, p).

Assume moreover that the two I1-type singularities on the base are closed
enough to each other. If any of the smoothed holomorphic discs appear on
the side of the wall

W− = {u ∈ B0||Zγ1+γ2(u)| < |Zγ1+γ2(p)|}, (13)

then Ω̃(γ) 6= 0 on the side W−. There exists an affine line l passing through
p which Zγ1+γ2 has constant phase ϑ0 on l and |Zγ1+γ2 | strictly decreasing
in towards W−. There will be a point p′ on l such that Zγ1+γ2 = 0 and
thus Ω̃(γ1 + γ2; p

′) = 0. This contradicts to the fact that there is no wall of
marginal stability Wγ1,γ2 between p and p′ (see Figure 5.2).

Thus the difference of the invariant only appear the other side of the
wall. Using the fact that the central charges are holomorphic functions and
its Cauchy-Riemann equation, this is equivalent to the side of the wall where

1

2

〈γ1, γ2〉|Z(γ1 + γ2)|
Im
[
Z(γ1)Z̄(γ2)

] > 0.

Remark 5.3. The general wall-crossing formula later is proved by the au-
thor [22].

Remark 5.4. The Example 5.2 can also be viewed as the fact that spe-
cial Lagrangian discs can only be smoothed out in part of the parameter
space, the elliptic fibre boundary conditions. Similar structure also appears
in smoothing of conical special Lagrangians in Calabi-Yau 3-folds [17].
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Figure 3: The red curve is the wall of marginal stability and the holomorphic
disc

5.2 Wall-Crossing Formula II: ∂γ = 0

In this section, we will focus on the situation for L ∼= S2. In particular, the
relative classes always have their boundaries homologous to zero.

In this situation, the holomorphic Lagrangian L is rigid and thus the
argument in the first part of the Theorem 2.7 breaks down. Instead of
Def(L), we consider the moduli space of marked K3 surfaces. Let LK3 be
the K3 lattice

LK3 = (−E8)⊕ (−E8)⊕
(
0 1
1 0

)
⊕
(
0 1
1 0

)
⊕
(
0 1
1 0

)
,

where E8 is the unique positive definite, unimodular even lattice of rank 8.

Definition 5.5. A pair (X,α) is called a marked K3 surface if X is a K3
surface and α : H2(X)→ LK3 is an isomorphism of lattices.

Now given [L] ∈ LK3 with [L]2 = −2, we set M[L] be the moduli space
of marked K3 surfaces such that the homology class corresponds to [L] can
be realized as holomorphic cycles. To be precise, we set

M[L] := {(X,α) marked K3 surface|α−1[L] ∧ ΩX = 0}/ ∼, (14)
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where ΩX is a holomorphic volume form of the K3 surface X. Two marked
K3 surfaces (X,α) (X ′, α′) are equivalent if and only if there exists a diffeo-
morphism f : X → X ′ such that α ◦ f∗ = α′. There is a Zariski open subset
ofM[L] , denoted byM′[L], parametrized the marked K3 surfaces such that

there exists a smooth rational curve (we will still denote it by L) in the
homology class correspond to [L]. Then we can define the charge lattice

Γ :=
⋃

s∈M′
[L]

H2(Xs, L) ∼=M′[L] ×
(
H2(X)/ImH2(L)

)
is a trivial local system over M′[L] and the central charge locally to be

Z : Γ ∼=M′[L] ×
(
H2(X)/ImH2(L)

)
→ C

(s, γ) 7−→ Zγ(s) =

∫
γ

Ωs

by choosing a local section Ωs of holomorphic volume forms over M′[L].
Although the definition of the central charge depends the choices of local
section but the locus defined by equation

ArgZγ1 = ArgZγ2

is well-defined.
The dependence of the invariant on the choice of the Kähler class [ω] is

given by the following theorem.

Theorem 5.6. [21] Assume that there is a 1-parameter family of Kähler
classes [ωt], t ∈ [−ε, ε] goes across a single valid hyperplane labeled by γ̃ at
t = 0. Then the wall-crossing formula for crossing the hyperplane labeled by
γ̃ is given by

∆Ω̃(γ) := Ω̃[ωε](sε, γ)− Ω̃[ω−ε](s−ε, γ) = ±([L] · γ̃)GWred(γ̃), (15)

where ([L] · γ̃) is the intersection pairing in L∨K3 and GWred(γ̃) denotes the
reduced Gromov-Witten invariants associated to γ̃. The sign in (15) is given
by

1

2

(
sgn(ω−ε · γ̃)− sgn(ωε · γ̃)

)
. (16)

The Theorem 4.6 together with Theorem 5.6 then provide a closed for-
mula to compute the reduced open Gromov-Witten invariants.
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Theorem 5.7. [21] Let γ ∈ H2(X,L), then

Ω̃[ω](γ̃) =
∑

γ̃:ι(γ̃)=γ

±([L] · γ̃)GWred(γ̃), (17)

where the sign in given in (??).

A direct application of Theorem 5.7 is another proof of the ”reality
condition”. Indeed, if we replace γ by −γ, then exactly the ± and ([L] · γ̃)
change the sign and all the other terms remain the same.

6 Applications

6.1 Correspondence between Tropical Discs and Holomor-
phic Discs

In this section, we will illustrate the application of the reduced open Gromov-
Witten invariant in tropical geometry. We will show that for any relative
class with non-trivial reduced open Gromov-Witten invariants, there exists
a corresponding tropical disc. Moreover, the tropical discs counting and
the reduced Gromov-Witten invariants are the same is equivalent to the
Kontsevich-Soibelman wall-crossing formula for the reduced open Gromov-
Witten invariants.

We first review the definition of tropical curves.

Definition 6.1. A manifold B of dimension n is called an integral affine
manifold if it admits a collection of coordinate charts such that its transition
functions falls in GLn(Z) n R2. A manifold B is called an integral affine
manifold with singularities if there exists a subset ∆ of codimension at least
two such that B\∆ is an integral affine manifold.

Example 6.2. [16] Let X → B be a special Lagrangian fibration (without
singular fibres), then there exists two affine structures on B , known as the
symplectic affine structure and the complex affine structure.

Definition 6.3. Let B be a two dimensional integral affine manifold with
singularity and B0 be the complement of the singularities ∆. A tropical curve
(tropical disc) on B is a 3-tuple (φ,G,w) where G is a rooted connected graph
(with a root x). We denote the set of vertices and edges by G[0] and G[1]

respectively, with a weight function w : G[1] → N. And φ : G → B is a
continuous map such that

1. We allow G to have unbounded edges only when B is non-compact.
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2. For each e ∈ G[1], φ|e is either an embedding of affine segment on
B0 or φ|e is a constant map. In the late case, e is associated with a
non-zero tangent direction (up to sign).

3. For the root x, φ(x) ∈ B0.

4. For each v ∈ G[0], v 6= x and val(v) = 1, we have φ(v) ∈ ∆. More-
over, if the monodromy of the affine structure at φ(v) is conjugate to(
1 n
0 1

)
, n ∈ Z 6, then the image of edge adjacent to v is in the mon-

odromy invariant direction.

5. For each v ∈ G[0], val(v) ≥ 1, we have the following assumption:

(balancing condition) Each outgoing tangent at u along the image of
each edge adjacent to v is rational with respect to the natural integral
structure on Tφ(v)B. Denote the outgoing primitive tangent vectors by
vi, then ∑

i

wivi = 0.

Remark 6.4. [20] Given an elliptic K3 surface X → B and a choice of
Kähler class, the hyperKähler rotation provides an S1-family of K3 surfaces
with special Lagrangian fibration. From the Example 6.2, the above data in-
duce an S1-family of integral affine structures with singularities on B. Let
u ∈ B0 and denote the fibre over u by Lu. Then there exists an associate rel-
ative class [φ] in H2(X,Lu) for every tropical discs φ with stop at u. There is
an tropical discs counting invariant Ω̃trop(γ;u), which is a weighted counts7

of tropical discs with stop at u and with respect to one of the above S1-family
of affine structures on B, for each relative class γ ∈ H2(X,Lu). Moreover,
the tropical discs counting invariants satisfy the Kontsevich-Soibelman wall-
crossing formula.

Now we can state the correspondence theorem in [20]:

Theorem 6.5. Let X be an elliptic K3 surface (singular fibres not neces-
sarily of I1-type). For every relative class γ ∈ H2(X,Lu) with Ω̃(γ;u) 6= 0,

6Straightforward computation shows that the monodromy invariant direction of the
affine structure is rational. There might be other constraints for other kind of singularities.
In other words, there might be tropical curve in this definition which is not coming from
geometry.

7It worth noticing that the weight is related to the weight introduced by Milkalkin [25]
but not the same one
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there exists a tropical disc φ such that [φ] = γ. Moreover, the symplectic area
of the holomorphic disc is just the total affine length of the corresponding
tropical disc.

Proof. (Sketch) Assume that Lu0 is a torus fibre bounds a holomorphic discs
in the relative class γ ∈ H2(X,Lu0) and Ω̃(γ;u0) 6= 0. From Proposition
2.5, the holomorphic disc is realized in Xϑ, ϑ = ArgZγ(u). There exists an
affine ray l on Bϑ emanate from u0 such that

1. |Zγ | is decreasing along l and

2. ArgZγ remains constant along l.

There is some point u′ on l the function |Zγ | decreased to zero. Then there
are two situation:

1. The invariant Ω̃(γ;u) is constant along the line. In this situation, there
are holomorphic discs of arbitrary small symplectic area of boundary
on Lu, where u is closed enough to u′. From gradient estimate, the
point u′ is a singularity of the affine structure and the relative γ (up
to parallel transport) is the Lefschetz thimble.

2. If the invariant Ω̃(γ;u) jumps somewhere along l, say first jump at
u′ ∈ B0, then u′ ∈ Wγ . Moreover, one can show that there exists
γi ∈ H2(X,Lu′) and integers ni such that

γ =
∑
i

niγi (18)

and Ω̃(γi;u
′) 6= 0. Then we can replace the holomorphic discs of

relative class γ by each γi and run the same procedure.

From Gromov compactness theorem, the procedure will end with finitely
many splittings. The union of the affine rays give the tropical disc with stop
at u and the equation (18) translates into the balancing condition of the
tropical discs 8.

It is natural to conjecture that the tropical discs counting invariants
coincide with the reduced open Gromov-Witten invariants.

Conjecture 6.6. Given any relative class γ ∈ H2(X,Lu), then

Ω̃(γ;u) = Ω̃trop(γ;u).

8It worth mentioning that the similar mechanism also appears in the (split) attractor
flows of black holes [7]
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Since the tropical discs counting invariant Ω̃trop(γ;u) satisfies the Kontsevich-
Soibelman wall-crossing formula, the Conjecture 6.6 is equivalent to the
Kontsevich-Soibelman wall-crossing formula for the reduced open Gromov-
Witten invariants Ω̃(γ;u).

6.2 Multiple Cover Formula for Holomorphic Discs

In the section, we will prove the multiple cover formula for the reduced
Gromov-Witten invariants using the closed formula developed in Theorem
5.7.

Gromov-Witten invariants naively are the counting of (pseudo-)holomorphic
curves with certain incidence conditions in a target symplectic manifold.
When the curve class is primitive, one can slightly perturb the almost com-
plex structures such that the Gromov-Witten invariants are the true enu-
merative counting. However, the Gromov-Witten invariants might become
rational numbers when the curve class is not primitive due to the presence of
the automorphism of the relevant moduli spaces. Therefore, it is a natural
question to ask whether there is a geometrically enumerative interpretation
for Gromov-Witten invariants. The Gopakumar-Vafa conjecture suggests
that one might want to consider another equivalent invariants to answer the
question.

Conjecture 6.7. [15] Let X be a Calabi-Yau 3-fold. Let Ng
d denote the

Gromov-Witten invariants of genus g curves of degree d. If we define the
sets of number ngd by the formula∑

β 6=0

∑
g≥0

Ng
d t

2g−2qd =
∑
β 6=0

∑
g≥0

ngd

∑
k>0

1

k

(
2 sin

kt

2

)2g−2
qkd, (19)

then ngd ∈ Z. In particular, we consider only the genus zero Gromov-Witten
invariants, we have

N0
d =

∑
d|k

n0d
k

k−3. (20)

The equation (20) is known as the Aspinwall-Morrison formula [2][30][23].
It worth to mention that Taubes also had the similar point of view connect-
ing Gromov invariants to the solutions of Seiberg-Witten equations [29].

Although the Gromov-Witten invariants of K3 surfaces vanish for all
genus, one can change the tangent-obstruction theory to define the reduced
Gromov-Witten invariants [33][4][19][26]. Let Gd be number of rational
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curves of with d nodes in a generic algebraic K3 of genus d. Then the
multiple cover formula for genus zero reduced Gromov-Witten invariants is
similar to that of Gromov-Witten invariants for Calabi-Yau 3-folds.

Theorem 6.8. [15][26] Let LK3 be the K3 lattice. Given a class β ∈ LK3

and denote the genus zero reduced Gromov-Witten invariant associated to
(the Poincaré dual of) β by nβ, then

nβ =
∑
d

1

d3
G 1

2
(β
d
)2+1

. (21)

Here we set Gd = 0 if d is not an integer.

There is a similar multiple cover formula for holomorphic discs conjec-
tured by [11][9] with 1

d3
replaced by ± 1

d2
. Since the philosophy that the

reduced theory of K3 surfaces is similar to the original theory of Calabi-
Yau 3-folds, we have the following conjecture for multiple cover formula for
reduced open Gromov-Witten invariants on K3 surfaces:

Conjecture 6.9. For any choice of the Kähler form, there exists a collection
of integers {Ω[ω](γ) ∈ Z} such that

Ω̃[ω] =
∑
d|γ

± 1

d2
Ω[ω](γ/d). (22)

In the previous section, it is shown that the conjecture holds for the
Ooguri-Vafa space, which is a local model for K3 surfaces. Now we are
ready for the main theorem of this section:

Theorem 6.10. The Conjecture 6.9 holds for the case when L is a sphere
with all ± in (22) are taken to be positive.

Proof. Since for any γ ∈ H2(X,L), there exists a Kähler class [ω] (with
respect to some complex structure such that L is holomorphic Lagrangian)
such that Ω̃[ω](γ) = 0, which obviously obeys the multiple cover formula
holds. It suffices to prove that all the wall-crossing terms in Theorem 5.6
also satisfy (22). Indeed, from Theorem 5.6 and (21), we have

∆Ω̃(γ) = ±([L].γ̃)nγ̃

= ±([L].γ̃)
∑
k

1

k3
G 1

2
( γ̃
k
)2+1

= ±
∑
k

1

k2
([L].

γ̃

k
)G 1

2
( γ̃
k
)2+1.
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Therefore,

∆Ω(γ) = ±([L].
γ̃

k
)G 1

2
( γ̃
k
)2+1 (23)

are integers from Yau-Zaslow formula.
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